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Strong shock waves in a dense gas: Burnett theory versus Monte Carlo simulation
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Plane shock waves in a hard-sphere fluid are analyzed within the framework of the Enskog theory. The
results are obtained from two different approaches:~i! the approximate solutions of the Enskog equation at the
levels of the Navier-Stokes and the~linear! Burnett orders; and~ii ! the exact solution of the Enskog equation
obtained by means of a Monte Carlo simulation method. A comparison between the profiles of velocity,
temperature, stress, and heat flux, as obtained from both approaches, is carried out. As expected, the shock
becomes thinner~in units of the mean free path! as the density decreases and/or the Mach number increases.
The approximate theoretical estimates for the shock thickness are smaller than the simulation values, but this
discrepancy becomes less important as the density increases. In general, the linear Burnett theory is found to
yield better results than the Navier-Stokes predictions, but both theories tend to overlap as the density in-
creases, and, surprisingly enough, the Navier-Stokes estimates are even slightly superior to those of the linear
Burnett theory at high Mach numbers.@S1063-651X~98!03012-8#

PACS number~s!: 47.40.Nm, 47.50.1d, 05.20.Dd, 51.10.1y
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I. INTRODUCTION

One of the most interesting far from equilibrium states
a fluid is the one corresponding to a plane shock wave
consists of a small, rapidly moving transition region in spa
connecting two equilibrium states, namely, a relatively co
low-pressure region and a relatively hot, high-pressure
gion @1#. Under conditions of sufficiently high Mach numbe
(M*2) in a dilute gas, it is a well-known fact that the sho
profiles are not accurately described by the Navier-Sto
~NS! equations@2–6#. This has motivated the search for a
ternative theoretical approaches, such as the Burnett th
@3–7#, the bimodal distribution of Mott-Smith@8#, Grad’s
moment method@9#, a modified NS theory@10#, or a gener-
alized hydrodynamics@11#. On the other hand, much les
progress has been done in the case of dense fluids. Com
son between molecular dynamics simulations for a Lenna
Jones fluid and the NS profiles showed that the differen
were relatively small@12,13#. In contrast, Frezzotti@14# has
shown that, in the context of the Enskog equation, the
theory is accurate only at low Mach numbers.

A natural question is whether, as happens in an ideal
@3,4,6#, the Burnett theory significantly improves over th
NS theory when comparing with simulation or experimen
data for dense gases. To our knowledge, this question ha
been addressed in detail. This is mainly due to the fact
the density dependence of the transport coefficients is
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explicitly known. A remarkable exception is the hard-sphe
model, for which the Enskog theory provides a reliable d
scription over a wide range of length and time scales@15#. In
this framework, the Navier-Stokes coefficients@16# and the
linear Burnett coefficients derived from the standard Ensk
theory~SET! @17# and from the revised Enskog theory~RET!
@18# are explicitly known as functions of density. Unfortu
nately, to our knowledge, the nonlinear Burnett coefficien
which are the same in both the SET and the RET@18#, have
not been derived so far.

The aim of this paper is to study shock waves for seve
values of density and the Mach number within the fram
work of the Enskog theory. This study will be carried out b
means of two different but complementary routes: on the
hand, we will numerically solve both the NS and the line
Burnett hydrodynamic equations@19# by using the expres-
sions for the corresponding transport coefficients deriv
from the Enskog equation; on the other hand, we will so
the full Enskog equation by means of a numerical algorith
More specifically, we will use the recently proposed Ensk
Simulation Monte Carlo~ESMC! method@20#, which is an
extension of the well-known direct simulation Monte Car
~DSMC! method@21# to simulate the Boltzmann equation
Typically, as it also happens in the low-density case@3,4,6#,
the Burnett approximation represents a significant impro
ment over the NS approximation. However, this improv
ment is progressively less noticeable as the density increa
especially for high Mach numbers.

II. HYDRODYNAMIC DESCRIPTION
OF PLANE SHOCK WAVES

For plane shock waves it is convenient to choose a re
ence frame moving with the front, so that the shock is s
7319 © 1998 The American Physical Society
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tionary in this frame. Under this condition, and taking thex
axis as the shock wave direction, the hydrodynamic bala
equations yield

r~x!u~x!5const, ~1!

Pxx~x!1r~x!u2~x!5const, ~2!

r~x!u~x!@e~x!1 1
2 u2~x!#1Pxxu~x!1q~x!5const, ~3!

wherer is the mass density,u is thex component of the flow
velocity, Pxx is the relevant element of the pressure tensoe
is the internal energy per mass unit, andq is thex component
of the heat flux. Asymptotically far from the shock front, th
fluid is at equilibrium, so thatq50 andPxx5p, p being the
hydrostatic pressure. This leads to the well-known Ranki
Hugoniot conditions@1#

r0u05r1u1 , ~4!

p01r0u0
25p11r1u1

2 , ~5!

r0u0~e01 1
2 u0

2!1p0u05r1u1~e11 1
2 u1

2!1p1u1 , ~6!

where hereafter the subscript 0 refers to quantities co
sponding to the unshocked ‘‘cold’’ equilibrium state (x→
2`, upstream!, while the subscript 1 refers to the shock
‘‘hot’’ equilibrium state (x→`, downstream!.

Thus far, all the above equations apply to any fluid s
tem. In order to close the problem we need to specify
relationship between the fluxes and the hydrodynamic gr
ents. To linear Burnett order and for the particular geome
of the problem, the constitutive equations can be written

Pxx~x!5p~x!2@ 4
3 m~x!1k~x!#u8~x!2@ 4

3 a3~x!

2a1~x!#r9~x!1@ 2
3 a4~x!1a2~x!#T9~x!, ~7!

q~x!52l~x!T8~x!1@ 2
3 b1~x!2b2~x!#u9~x!, ~8!

where p(x) is the local equilibrium pressure,T(x) is the
local temperature, and the primes denote spatial derivati
The transport coefficientsm ~shear viscosity!, k ~bulk vis-
cosity!, l ~thermal conductivity!, a i , and b i depend on
space through their dependence on the local density and
perature. From Eq.~1! one easily hasr952ru9/u
12ru82/u2, so that, by consistency, we neglect the nonl
ear term and replace in Eq.~7! r9→2ru9/u. When the
terms containing the second derivatives are dropped, one
tains the NS constitutive relations. In general, the expl
expressions of the transport coefficients are not known.

The above difficulties are partially overcome by choos
a hard-sphere system. In this case, the internal energy is
ply proportional to the temperature, namely,e53kBT/2m
~wherekB is the Boltzmann constant andm is the mass of a
particle!, and the pressure is given by

p5
rkBT

m
@114hx~h!#, ~9!

where h[prs3/6m is the packing fraction,s being the
sphere diameter, andx(h) is the equilibrium value of the
ce
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pair correlation function at the point of contact. Here we w
use the Carnahan-Starling approximation@22#, i.e., x(h)
5(12h/2)/(12h)3. In addition, the Chapman-Ensko
method @16# applied to the Enskog equation provides t
density and temperature dependence of the transport co
cients. The NS coefficients can be found, for instance,
Ref. @16#, while the linear Burnett coefficients given by th
SET and the RET can be found in Refs.@17# and @18#, re-
spectively. When one inserts all these expressions into E
~7! and~8!, the balance equations~1!–~3! constitute a closed
set of nonlinear differential equations for the unknow
r(x), u(x), andT(x), subjected to the boundary condition
~4!–~6!. Its solution must be carried out numerically. Due
the directional character of the mathematical stability of t
set, the numerical integration has to start at the hot end
first shown by von Mises@23# in the context of the NS equa
tions. For more details about the numerical method e
ployed in this paper, we refer the reader to Ref.@19#.

In the plane shock wave problem it is convenient to sc
the distance x with the mean free path l0

5@A2pn0x(h0)s2#21 of the hard-sphere gas in the co
region. Also, we choose the originx50 of the shock front as
the point whereu5(u01u1)/2. The relevant dimensionles
parameters characterizing the problem can be taken as
packing fractionh0 upstream and the Mach numberM
[u0 /a0 , wherea0 is the speed of sound upstream. By usi
well-known thermodynamics relations@24#, the speed of
sounda of a hard-sphere fluid is

a5S 5kBT

3m D 1/2F118hx1
4

5
h2~8x213x8!G1/2

, ~10!

wherex8[dx/dh. It must be emphasized that, for consi
tency, bothl0 anda0 refer to quantities of adensegas. The
latter point is especially important in order to interpretM as
the real Mach number, so that the shock wave only appea
M.1. This is in contrast to other choices, such as the ra
betweenu0 and the speed of sound of an ideal gas@25#.

III. MONTE CARLO SIMULATION OF THE ENSKOG
EQUATION

As is well known, a very fruitful and efficient algorithm
to solve the Boltzmann equation is Bird’s DSMC meth
@21#. In the context of a dense hard-sphere gas describe
the Enskog equation, an extension of the DSMC method
been recently proposed@20#. This method has been shown
reproduce well the density dependence of the Enskog tr
port coefficients, namely, the shear viscosity@20#, the visco-
metric functions@26#, and the thermal conductivity@27#. As
applied to the plane shock wave problem, the ESMC met
proceeds as follows. A system of lengthD along thex direc-
tion is occupied by a sufficiently high numberN of particles.
The boundaries of the system must be sufficiently far aw
from the shock front, so that they can be considered to b
equilibrium. This implies thatD is much larger than the
shock thicknessd. The system is split intoL layers of width
Dx5D/L smaller thand. The physical density of layerI
51, . . . ,L is nI5n̄L(NI /N), wheren̄ is the average density
andNI is the number ofsimulatedparticles in cellI. Those
particles lying in cells separated from the boundaries a
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tance smaller than or equal tos represent ‘‘bath’’ particles,
while the remaining ones represent ‘‘actual’’ particles. T
role of bath particles is to sample the conditions in the
stream and downstream domains, so that their velocity
tributions are kept to be Maxwellians. At integer timest
5Dt,2Dt,3Dt, . . . , the positions $xi% and velocities$vi%
are updated due to free streaming and collisions. In the f
streaming stage,xi→xi1v ixDt; if a particle leaves the sys
tem, it is reentered through the opposite boundary with
same velocity, so that the mass flux is constant@Eq. ~1!#.
Before proceeding to the collision stage, the velocities of
bath particles are replaced by random velocities sele
from the corresponding equilibrium probability distribution
characterized by the upstream or downstream hydrodyna
quantities, namely,u0,1 andT0,1 @6#.

The essential distinction between the DSMC and ESM
methods appears in the collision stage, in parallel to w
happens between the Boltzmann and Enskog equations@16#.
For each cellI a sample of12 NIvmax particles are randomly
chosen with equal probability, wherevmax is an upper bound
of the quantityv i j defined below. For each particlei belong-
ing to this sample, the following steps are taken:~1! a given
direction ŝi is chosen at random with equiprobability, an
the layerJ containing the pointxi1sŝ ix is identified;~2! a
particle j belonging to layerJ is selected at random;~3! the
collision between particlesi and j is accepted with a prob
ability equal toQ(ŝi•gi j )v i j /vmax, wheregi j [vi2vj and
v i j [s24p(ŝi•gi j )x i j nJDt, x i j being the pair correlation
associated with the positions of the spheresi andj; and~4! if
the collision is accepted, the post-collision velocities are
signed, namely,vi→vi2(ŝi•gi j )ŝi , vj→vj1(ŝi•gi j )ŝi ,
except if i and/orj is a bath particle, in which case its velo
ity is unchanged. In our simulations we have implemen
the SET rather than the RET. This implies thatx i j
5x(hK), whereK denotes the layer equidistant from laye
I andJ. In order to avoid any systematic bias, the sorting
the cellsI is chosen randomly.

The values of the technical parametersD, N, Dx, andDt
have been chosen depending on the case considered
example, in the case whereh050.2 andM51.3 we have
taken D570l0 , N5350 000, Dx50.1l0 , and Dt
50.003l0 /A2kBT0 /m. As the shock front becomes sharp
~ash0 decreases and/orM increases!, the values ofDx and
Dt must be chosen smaller. To shorten the transient time
initial condition has been taken as corresponding to two
ferent equilibrium distributions forx,0 andx.0. Once a
steady state is reached, the hydrodynamic profiles are m
sured as time averages and also as averages over 5–10
pendent realizations.

IV. RESULTS

As a first case, we considerh050.2 andM51.3. Figure 1
shows the velocity and temperature profiles as obtained f
the simulations and from the NS approximation. As e
pected, since the Mach number has a moderate value, th
equations describe the shock profiles accurately. In th
conditions, the shock thickness isd;30l0 . We have also
compared our Monte Carlo data with those obtained by F
zotti @28# from a numerical solution of the Enskog equati
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and from molecular dynamics simulations, and we ha
found an excellent agreement. This confirms that the S
provides a reliable theory for this relatively dense sho
wave.

Discrepancies between the NS profiles and the simula
ones appear when one considers larger Mach number
smaller densities. As an illustration, Fig. 2 shows the vel
ity and temperature profiles forh050.1 andM52, now in-
cluding the predictions obtained from the linear Burnett a
proximation with transport coefficients given by the Ensk
theory. In the latter case we have considered both the S
and RET, but the respective profiles are practically indist
guishable. The Burnett profiles are interrupted on the c
side of the front due to the numerical instability of the n
merical solution@19#. This does not represent a serious dra
back, since the cold side is well described by the NS the
and the same is expected to hold for the Burnett theory
addition, this instability does not affect the evaluation of t
shock thickness~see below!, as the hydrodynamic quantitie

FIG. 1. Profiles of~a! the reduced velocity (u2u1)/(u02u1)
and~b! the reduced temperature (T2T0)/(T12T0) at h050.2 and
M51.3. The solid lines refer to the Navier-Stokes solution, and
circles correspond to the simulation data.

FIG. 2. Profiles of~a! the reduced velocity (u2u1)/(u02u1)
and~b! the reduced temperature (T2T0)/(T12T0) at h050.1 and
M52. The solid and dashed lines refer to the Navier-Stokes
Burnett solutions, respectively, and the circles correspond to
simulation data.
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near their inflection points are rather stable. On the ot
hand, Fiscko and Chapman@3# were able to overcome this
difficulty in the case of a dilute gas by solving the time
dependent equations rather than the steady-state ones.
Fig. 2 we observe that the~linear! Burnett correction signifi-
cantly improves the agreement with the simulation data
the hot side of the front, as well as the shock thicknessd
;6l0). The improvement of the Burnett theory over the N
theory is even more noticeable in Figs. 3 and 4, where
profiles of the stressPxx2p and the heat fluxq are plotted.

In order to carry out a more systematic study, it is conv
nient to introduce a parameter characterizing the thicknes
the shock front. As usual@3,4,11,21,25#, we define the recip-
rocal shock thickness as the maximum value of the norm
ized density gradient:

d215
1

n12n0
S dn

dxD
max

. ~11!

The density dependence ofd21 at M52 is shown in Fig. 5.
Both the NS and linear Burnett theories correctly predict th
the shock thickness~in units of the upstream mean free path!
increases with density. On the other hand, both theories l

FIG. 3. The same as in Fig. 2, but for the stressPxx2p, mea-
sured in units of 2kBT0 /l0

3 .

FIG. 4. The same as in Fig. 2, but for the heat fluxq, measured
in units of m(2kBT0 /m)3/2/l0

3 .
r

rom

n

e
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to shock fronts thinner than the correct ones. While, in g
eral, the Burnett estimate is better than the NS one, the~lin-
ear! Burnett correction becomes less important as the den
increases. Ath050 the NS and Burnett deviations from th
simulation value ofd are about 32% and 19%, respective
while at h050.2 both theories give practically the same d
viation of about 14%. The monotonic increase ofd/l0 with
h0 contrasts with previous results@25#, where a nonmono-
tonic behavior was claimed. It is also interesting to note th
when measured in units of the sphere diameters, the shock
thickness decreases as the density increases, at least i
density range considered. AtM52, for instance,d/s is in-
finite in the limit h0→0, it is equal to 5.5 ath050.1, and it
takes the value 4.4 ath050.2.

As a complement, the dependence ofd on M for several
values of the density is displayed in Fig. 6. As the Ma
number decreases the shock thickness increases, beco
infinite in the limit M→1. The monotonic behavior ofd/l0

FIG. 5. Density dependence of the reciprocal shock thickn
~in units of the mean free pathl0) at M52. The solid and dashed
lines correspond to the Navier-Stokes and Burnett solutions, res
tively, while the circles are simulation results.

FIG. 6. Plot of the reciprocal shock thickness~in units of the
mean free pathl0) as a function of the Mach number at~a! h0

50, ~b! h050.1, and~c! h050.2. The solid and dashed lines co
respond to the Navier-Stokes and Burnett solutions, respectiv
while the symbols are simulation results.
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as a function ofh0 observed in Fig. 5 atM52 is confirmed
in Fig. 6 for the range 1,M,5. In general, we see again a
improvement of the linear Burnett predictions over tho
from the NS theory, except at the highest density conside
(h050.2), where, surprisingly, the Burnett thickness
smaller than the NS thickness for sufficiently large Ma
numbers. This could be due to the absence of nonlinear B
nett terms in the constitutive equations or to the nonconv
gent asymptotic character of the Chapman-Enskog expan
@29#. It must be noted that, in the case of a low-density gas
particles interacting with a potential softer than that of ha
spheres, there exists a valueM* of the Mach number for
which d reaches a minimum, so thatd increases forM
.M* @3,4,11,21#. For instance,M* .3 for Maxwell mol-
ecules. However, in the case of a dilute gas of hard sphe
d increases withM and tends to a given value, at least a
cording to the NS theory@21#. Our results forh050 support
this conclusion. The results plotted in Fig. 6 forh050.1 and
0.2 seem to indicate that either the asymptotic value ofd is
practically reached for smaller values ofM than in the low-
density gas, or that there also exists a maximum value
certainM* (h0).

V. DISCUSSION

In this paper we have addressed the problem of pl
shock waves in a dense hard-sphere gas within the fra
work of the Enskog theory. The results have been obtai
from two different routes:~i! the numerical solution of the
hydrodynamic equations in the NS order and in the~linear!
Burnett order with transport coefficients given by the Ensk
theory, and~ii ! the Monte Carlo simulation of the Ensko
equation. We have considered a range 0<h0<0.2 for the
packing fraction of the fluid in the cold~upstream! region
and a range 1<M<5 for the Mach number. The result
indicate that the theoretical predictions underestimate
shock thicknessd, this effect becoming more important a
d/l0 decreases~i.e., at low densities and high Mach num
bers!. In general, the linear Burnett theory presents a be
agreement with the simulation data than the NS theo
However, the estimates of both theories become closer a
density increases, and even the Burnett corrections
slightly worse than the NS estimates at high Mach numb
This latter fact could be due to the absence in the theor
nonlinear Burnett terms, which so far are not explici
known for a dense hard-sphere gas. In the low-density lim
however, the influence of the nonlinear Burnett terms is re
ys
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tively small; atM55, for instance, the value of the recipro
cal thicknessd21 as obtained from the linear~nonlinear!
Burnett theory is 0.71~0.72! times the NS value and 1.3
~1.35! times the simulation value. In this respect it is inte
esting to remark that Chapman and co-workers@3–5# found
that the addition of third order~super-Burnett! terms to the
Burnett equations only slightly affects the shock structu
Whether this small influence on the linear Burnett solution
nonlinear Burnett terms and linear and nonlinear sup
Burnett terms also holds for finite densities is of course
certain. Another possible explanation could be related to
asymptotic character of the Chapman-Enskog expansion

As a general conclusion, we remark that the NS the
provides a better description of plane shock waves for de
gases than for dilute gases, thus confirming previous ob
vations@12,13#. This is related to the fact that, although th
shock becomes thinner in real units~e.g., in units ofs) as
the density increases, the thickness increases when expre
in units of the mean free path. For small nonzero densi
the ~linear! Burnett theory improves over the NS descriptio
but for moderate and/or large densities the~linear! Burnett
theory is not enough, so that other approaches should
considered. An alternative approach could be the exten
of Grad’s moment method to the case of the Enskog equa
which was recently applied to the uniform shear flow@30#.

Finally, it is worth pointing out that, since the results ha
been derived from the Enskog description for a dense h
sphere fluid, the above conclusions cannot be extrapol
without caution to real systems. Nevertheless, here we h
restricted ourselves to the regime of moderate densitiesh0
<0.2), where the NS transport coefficients given by the E
skog theory are known to agree well with molecular dyna
ics results@31#. In addition, the shock profiles obtained fro
the Enskog equation forh050.2 andM51.3 show a good
agreement with those given by molecular dynamics simu
tions @28#. It remains an open question for the future, who
answer may hopefully be motivated by our results, to che
whether this agreement extends to higher values of the M
number.
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