PHYSICAL REVIEW E VOLUME 58, NUMBER 6 DECEMBER 1998

Strong shock waves in a dense gas: Burnett theory versus Monte Carlo simulation
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Plane shock waves in a hard-sphere fluid are analyzed within the framework of the Enskog theory. The
results are obtained from two different approactigshe approximate solutions of the Enskog equation at the
levels of the Navier-Stokes and tkinearn Burnett orders; andi) the exact solution of the Enskog equation
obtained by means of a Monte Carlo simulation method. A comparison between the profiles of velocity,
temperature, stress, and heat flux, as obtained from both approaches, is carried out. As expected, the shock
becomes thinnefin units of the mean free patlas the density decreases and/or the Mach number increases.
The approximate theoretical estimates for the shock thickness are smaller than the simulation values, but this
discrepancy becomes less important as the density increases. In general, the linear Burnett theory is found to
yield better results than the Navier-Stokes predictions, but both theories tend to overlap as the density in-
creases, and, surprisingly enough, the Navier-Stokes estimates are even slightly superior to those of the linear
Burnett theory at high Mach numbef$1063-651X98)03012-§

PACS numbg(s): 47.40.Nm, 47.50td, 05.20.Dd, 51.16:y

I. INTRODUCTION explicitly known. A remarkable exception is the hard-sphere
model, for which the Enskog theory provides a reliable de-
One of the most interesting far from equilibrium states inscription over a wide range of length and time scles]. In
a fluid is the one corresponding to a plane shock wave. Ithis framework, the Navier-Stokes coefficieis$] and the
consists of a small, rapidly moving transition region in space"”ear Burnett coefficients derlved_ from the standard Enskog
connecting two equilibrium states, namely, a relatively cold (N€0rY(SET) [17] and from the revised Enskog thedfRET)
low-pressure region and a relatively hot, high-pressure rel18] are explicitly known as functlpns of density. Un_fo_rtu—
gion[1]. Under conditions of sufficiently high Mach number nat_ely, to our knowlgdge, the nonlinear Burnett coefficients,
(M=2) in a dilute gas, it is a well-known fact that the shock Which are the same in both the SET and the RES], have

profiles are not accurately described by the Navier-Stoke80t Peen derived so far.
(NS) equationg2—6]. This has motivated the search for al- The aim of this paper is to study shock waves for several

ternative theoretical approaches, such as the Burnett theo¥fues of density and the Mach number within the frame-
[3—7], the bimodal distribution of Mott-Smitig], Grad's ork of the Enskog theory. This study will be carried out by

moment method9], a modified NS theory10], or a gener- Means of two different but complementary routes: on the one

alized hydrodynamic§11]. On the other hand, much less hand, we will numerically solve both the NS and the linear
progress has been done in the case of dense fluids. Compaurnett hydrodynamic equatiorid9] by using the expres-

son between molecular dynamics simulations for a LennardS!ons for the corresponding transport coefficients derived

Jones fluid and the NS profiles showed that the difference%om the Enskog equation; on the other hand, we will solve

were relatively smal[12,13. In contrast, Frezzot{il4] has the full Enskog equation by means of a numerical algorithm.

shown that, in the context of the Enskog equation, the ndVore specifically, we will use the recently proposed Enskog
theory is accurate only at low Mach numbers. Simulation Monte CarldESMC) method[20], which is an

A natural question is whether, as happens in an ideal g& tension of the well-known direct simulation Monte Carlo
[3,4,6], the Burnett theory significantly improves over the DS,MC) method[Zl] to S|mulgte the Boltzmgnn equation.
NS theory when comparing with simulation or experimental 1YPically, as it also happens in the low-density cg3@,6),
data for dense gases. To our knowledge, this question has nfp¢ Burnett approximation represents a significant improve-
been addressed in detail. This is mainly due to the fact thaf’€nt over the NS approximation. However, this improve-

the density dependence of the transport coefficients is ndpent is progressively less noticeable as the density increases,
especially for high Mach numbers.

. HYDRODYNAMIC DESCRIPTION
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tionary in this frame. Under this condition, and taking the
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pair correlation function at the point of contact. Here we will

axis as the shock wave direction, the hydrodynamic balancase the Carnahan-Starling approximatif2?], i.e., x(#)

equations yield
p(X)u(x)=const, (1)
2

p(OU)[e(X) +7U%(x) ]+ Pet(x) +q(x) =const, (3)

Pux(X) + p(X)uz(X) =const,

wherep is the mass density, is thex component of the flow
velocity, P, is the relevant element of the pressure tensor,
is the internal energy per mass unit, apsé thex component

of the heat flux. Asymptotically far from the shock front, the

fluid is at equilibrium, so thatj=0 andP,,=p, p being the

hydrostatic pressure. This leads to the well-known Rankine

Hugoniot conditiong 1]

PoUo=p1Us1, (4)
2_ 2
Pot poUp=P1+pU7, 5
polo(€+ 3Ud) + Polo=piUs(er+3u) +pyuy,  (6)

=(1—75/2)/(1— )3. In addition, the Chapman-Enskog
method[16] applied to the Enskog equation provides the
density and temperature dependence of the transport coeffi-
cients. The NS coefficients can be found, for instance, in
Ref.[16], while the linear Burnett coefficients given by the
SET and the RET can be found in Refé7] and[18], re-
spectively. When one inserts all these expressions into Egs.
(7) and(8), the balance equatiori$)—(3) constitute a closed
set of nonlinear differential equations for the unknowns
p(x), u(x), andT(x), subjected to the boundary conditions
(4)—(6). Its solution must be carried out numerically. Due to
the directional character of the mathematical stability of this
set, the numerical integration has to start at the hot end, as
first shown by von Misef23] in the context of the NS equa-
tions. For more details about the numerical method em-
ployed in this paper, we refer the reader to Ré&#B].

In the plane shock wave problem it is convenient to scale
the distance x with the mean free path \q
=[\2mnox(70)c?] ! of the hard-sphere gas in the cold
region. Also, we choose the origiti=0 of the shock front as
the point whereu= (up+u,)/2. The relevant dimensionless

where hereafter the subscript O refers to quantities correparameters characterizing the problem can be taken as the

sponding to the unshocked “cold” equilibrium state—{

packing fraction g upstream and the Mach numbét

—oo, upstream while the subscript 1 refers to the shocked =ug/ay, wherea, is the speed of sound upstream. By using

“hot” equilibrium state (x— o, downstream

well-known thermodynamics relation®4], the speed of

Thus far, all the above equations apply to any fluid sys-sounda of a hard-sphere fluid is

tem. In order to close the problem we need to specify the
relationship between the fluxes and the hydrodynamic gradi-
ents. To linear Burnett order and for the particular geometry

4 1/2
1+87yx+ g 7°(8x°+3x")|

5kgT| "2
(10

3m

.

of the problem, the constitutive equations can be written as

Pyx(¥)=p(x) =[5 1(X) + (x)]u’ (X) ~ [ 3 @3(X)

—a1(x)]p"(¥) +[Fas () + ()T (%), (7)

q0)==XO)T'(X)+[5B1(x) = B(0IU"(x),  (8)

where p(x) is the local equilibrium pressurd;(x) is the

local temperature, and the primes denote spatial derivatives.

The transport coefficientg (shear viscosity « (bulk vis-
cosity), A (thermal conductivity, «;, and B; depend on

where y'=dyx/d#. It must be emphasized that, for consis-
tency, both\, anda, refer to quantities of @lensegas. The
latter point is especially important in order to interpkétas

the real Mach number, so that the shock wave only appears if
M>1. This is in contrast to other choices, such as the ratio
betweenuy and the speed of sound of an ideal §j25].

IlIl. MONTE CARLO SIMULATION OF THE ENSKOG
EQUATION

As is well known, a very fruitful and efficient algorithm

space through their dependence on the local density and ted Solve the Boltzmann equation is Bird's DSMC method

perature. From Eq.(1) one easily hasp”=—pu"/u

+2pu’?/u?, so that, by consistency, we neglect the nonlin-

ear term and replace in Eq7) p”"— —pu”/u. When the

terms containing the second derivatives are dropped, one ob

[21]. In the context of a dense hard-sphere gas described by
the Enskog equation, an extension of the DSMC method has
been recently proposg@0]. This method has been shown to

eproduce well the density dependence of the Enskog trans-

tains the NS constitutive relations. In general, the explicit?©'t coefficients, namely, the shear viscosig], the visco-

expressions of the transport coefficients are not known.

The above difficulties are partially overcome by choosing@P .
rRroceeds as follows. A system of lengthalong thex direc-

a hard-sphere system. In this case, the internal energy is si
ply proportional to the temperature, namebs 3kgT/2m
(wherekg is the Boltzmann constant amd is the mass of a
particle, and the pressure is given by

pkBT
m

[1+4nx(n)], 9

where »=mpa3/6m is the packing fractiong being the
sphere diameter, ang(#) is the equilibrium value of the

metric functiong26], and the thermal conductivify27]. As
plied to the plane shock wave problem, the ESMC method

tion is occupied by a sufficiently high numbirof particles.

The boundaries of the system must be sufficiently far away
from the shock front, so that they can be considered to be at
equilibrium. This implies thatD is much larger than the
shock thicknes®. The system is split intd layers of width
Ax=D/L smaller thans. The physical density of layerl
=1,... Lisn=nL(N,/N), wheren is the average density
andN, is the number okimulatedparticles in celll. Those
particles lying in cells separated from the boundaries a dis-
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tance smaller than or equal torepresent “bath” particles, 104
while the remaining ones represent “actual” particles. The
role of bath particles is to sample the conditions in the up-

stream and downstream domains, so that their velocity dis- € 08
tributions are kept to be Maxwellians. At integer times
=At,2At,3At, ..., thepositions{x;} and velocities{v;} g 0.6
are updated due to free streaming and collisions. In the free-=:
streaming stages;— X; +v;,At; if a particle leaves the sys- <_§ 0.4
tem, it is reentered through the opposite boundary with the £

same velocity, so that the mass flux is constidn. (1)].
Before proceeding to the collision stage, the velocities of the
bath particles are replaced by random velocities selected
from the corresponding equilibrium probability distributions 0.0
characterized by the upstream or downstream hydrodynamic
quantities, namelyyg ; and T 4 [6].

The essential distinction between the DSMC and ESMC
methods appears in the collision stage, in parallel to what F!G. 1. Profiles of(a) the reduced velocity (—u;)/(Uo—u;)
happens between the Boltzmann and Enskog equatidils ~ and(b) the reduced temperaturd { To)/(T,— To) at 70="0.2 and
For each cell a sample ofi N, wmay particles are randomly M =1.3. The solid lines ref(_ar to the Navier-Stokes solution, and the
chosen with equal probability, whetg,,is an upper bound C"cles correspond to the simulation data.
of the quantityw;; defined below. For each partidldelong- ) i ,
ing to this sample, the following steps are takéb:a given and from molecular dynamics simulations, and we have

direction & is chosen at random with equinrobability. and found an excellent agreement. This confirms that the SET
: quip Y provides a reliable theory for this relatively dense shock

the layerJ containing the poink; + oo, is identified;(2) a wave.

particlej belonging to layed is selected at randont3) the Discrepancies between the NS profiles and the simulation
collision between Partlclesandj is accepted with a prob- 5peg appear when one considers larger Mach numbers or
ability equal t00 (- gjj) wjj/wmax, Wheregj=vi—v; and  smaller densities. As an illustration, Fig. 2 shows the veloc-
wi15024w((}i.gij)xijmm, xij being the pair correlation ity and temperature profiles fajo=0.1 andM =2, now in-
associated with the positions of the sphdraadj; and(4) if  cluding the predictions obtained from the linear Burnett ap-
the collision is accepted, the post-collision velocities are asproximation with transport coefficients given by the Enskog
signed, namelyl"i‘)\/i_(&i'gij)&ia VJHVjﬁL((}i’gij)f}i. theory. In the latter case we hav_e c0n3|dered_ both _thg S_ET
except ifi and/orj is a bath particle, in which case its veloc- and RET, but the respective profiles are practically indistin-

ity is unchanged. In our simulations we have implementecQUiShable- The Burnett profiles are interrupted on the cold
the SET rather than the RET. This implies that, side of the front due to the numerical instability of the nu-

= x(7¢), whereK denotes the layer equidistant from layers merical solutiorf 19]. This does not represent a serious draw-

| andJ. In order to avoid any systematic bias, the sorting of22ck, since the cold side is well described by the NS theory
the cells! is chosen randomly. and the same is expected to hold for the Burnett theory. In

The values of the technical parametérsN, Ax, andAt addition, this instability does not affect the evaluation of the

have been chosen depending on the case considered. FYIOCK thicknesssee below, as the hydrodynamic quantities
example, in the case wherg,=0.2 andM=1.3 we have

taken D=70N,, N=350000, Ax=0.1\,, and At Tty
=0.003\y/+2kgTo/m. As the shock front becomes sharper 3 ¢

(as o decreases and/dfl increasey the values ofAx and

At must be chosen smaller. To shorten the transient time, the
initial condition has been taken as corresponding to two dif-
ferent equilibrium distributions fok<O andx>0. Once a
steady state is reached, the hydrodynamic profiles are mea;,
sured as time averages and also as averages over 5-10 ind§ 04
pendent realizations.

0.8

0.6

temperature

vel

0.2

IV. RESULTS
0.04
As a first case, we considegp=0.2 andM = 1.3. Figure 1 R T S S S R T

shows the velocity and temperature profiles as obtained from 00 4 6 4 2 0 2 4 6 8 10
the simulations and from the NS approximation. As ex-
pected, since the Mach number has a moderate value, the NS gy, 2. profiles of(a) the reduced velocity (— u;)/(U—Uy)
equations describe the shock profiles accurately. In thesgnd(p) the reduced temperaturd@ € To)/(T,—To) at 7,=0.1 and
conditions, the shock thickness &-301,. We have also M=2. The solid and dashed lines refer to the Navier-Stokes and
compared our Monte Carlo data with those obtained by FrezBurnett solutions, respectively, and the circles correspond to the
zotti [28] from a numerical solution of the Enskog equation simulation data.
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FIG. 3. The same as in Fig. 2, but for the str€&s—p, mea-

' k R FIG. 5. Density dependence of the reciprocal shock thickness
sured in units of RgTo/\g.

(in units of the mean free pathy) at M=2. The solid and dashed

o ) ) lines correspond to the Navier-Stokes and Burnett solutions, respec-
near their inflection pOIntS are rather stable. On the Otheﬁve|y, while the circles are simulation results.

hand, Fiscko and Chapmad8] were able to overcome this

difficulty in the case of a dilute gas by solving the time- to shock fronts thinner than the correct ones. While, in gen-
dependent equations rather than the steady-state ones. Fr%%l, the Burnett estimate is better than the NS one(lthe

E;gr{tli \?Vrﬁp?g\slggvteh?ztgtgd’eﬁszt%:ﬂiﬁgzzrrﬁﬁtlg?oﬁ'%g; o r(]ear) Burnett correction becomes less important as the density
the hot side of the front, as well as the shock thickness ( increases. Atyo=0 the NS and Burnett deviations from the

. simulation value ofs are about 32% and 19%, respectively,
NG)‘O)'. The Improvement of the _Burr_lett theory over the NSWhile at »,=0.2 both theories give practically the same de-
theqry Is even more noticeable in Figs. 3 and 4, where th?/iation of about 14%. The monotonic increaseddk o with
profiles of the stres®,,—p and the heat flux] are plotted. 0

In order to carry out a more systematic study, it is conve- 70 contrasts with previous resulf25], where a nonmono-

nient to introduce a parameter characterizing the thickness (_\'gl%l)nic behavior was claimed. Itis also interesting to note that,
the shock front. As usu#B,4,11,21,2% we define the recip- hen measured in units of the sphere diametethe shock

. ! thickness decreases as the density increases, at least in the
rocal shock thickness as the maximum value of the normal- - . - . o

) X S density range considered. M =2, for instances/o is in-

ized density gradient:

finite in the limit ,— 0, it is equal to 5.5 aiy=0.1, and it

1 /dn takes the value 4.4 aj;=0.2.
5 1= _) (12) As a complement, the dependencedobn M for several
ni—ne\dx/ values of the density is displayed in Fig. 6. As the Mach

number decreases the shock thickness increases, becoming
The density dependence 6f1 atM=2 is shown in Fig. 5. infinite in the limit M — 1. The monotonic behavior a¥/\
Both the NS and linear Burnett theories correctly predict that
the shock thicknes@n units of the upstream mean free path 0.3

1 1 1 T 1 T 1 ¥
increases with density. On the other hand, both theories lead
8-1
T T T T T T T T T 06 | i
0.001 I
T @
04} .
T om 3 i i
/’//, E ————————
f serPPEEEE LAt ()
-0.04 02 EI * % '
Y
- T ©
-0.06 0.0 Feniill RPN SRR R RS S SR PR |
0 15 20 25 30 35 40 45 50
M
-0.08 " 1 L 1 " 1 " 1 L 1 . 1 L 1 " L L 1 L H B : B
0 8 6 4 2 o0 2 1 s 3 1w FIG. 6. Plot of the reciprocal shock thicknege units of the
i, mean free path\y) as a function of the Mach number &) 7,

=0, (b) 79=0.1, and(c) ,=0.2. The solid and dashed lines cor-
FIG. 4. The same as in Fig. 2, but for the heat ftyxmeasured respond to the Navier-Stokes and Burnett solutions, respectively,
in units of m(2kgTo/m)¥%\3. while the symbols are simulation results.
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as a function ofpy observed in Fig. 5 a1 =2 is confirmed tively small; atM =5, for instance, the value of the recipro-
in Fig. 6 for the range £ M <5. In general, we see again an cal thicknessé ! as obtained from the lineamnonlineay
improvement of the linear Burnett predictions over thoseBurnett theory is 0.7X0.72 times the NS value and 1.33
from the NS theory, except at the highest density considere(l.35 times the simulation value. In this respect it is inter-
(70=0.2), where, surprisingly, the Burnett thickness isesting to remark that Chapman and co-worKérs5] found
smaller than the NS thickness for sufficiently large Machthat the addition of third ordefsuper-Burnejtterms to the
numbers. This could be due to the absence of nonlinear BuBurnett equations only slightly affects the shock structure.
nett terms in the constitutive equations or to the nonconverWhether this small influence on the linear Burnett solution of
gent asymptotic character of the Chapman-Enskog expansigronlinear Burnett terms and linear and nonlinear super-
[29]. It must be noted that, in the case of a low-density gas oBurnett terms also holds for finite densities is of course un-
particles interacting with a potential softer than that of hardcertain. Another possible explanation could be related to the
spheres, there exists a valik* of the Mach number for asymptotic character of the Chapman-Enskog expansion.
which & reaches a minimum, so that increases forM As a general conclusion, we remark that the NS theory
>M* [3,4,11,21. For instanceM* =3 for Maxwell mol-  provides a better description of plane shock waves for dense
ecules. However, in the case of a dilute gas of hard spheregases than for dilute gases, thus confirming previous obser-
8 increases withVl and tends to a given value, at least ac-vations[12,13. This is related to the fact that, although the
cording to the NS theor}21]. Our results forp,=0 support  shock becomes thinner in real uniEs.g., in units ofo) as
this conclusion. The results plotted in Fig. 6 fp§=0.1 and  the density increases, the thickness increases when expressed
0.2 seem to indicate that either the asymptotic valué &f  in units of the mean free path. For small nonzero densities
practically reached for smaller values Kfthan in the low-  the(linean Burnett theory improves over the NS description,
density gas, or that there also exists a maximum value at But for moderate and/or large densities tlisean Burnett
certainM™ (7). theory is not enough, so that other approaches should be
considered. An alternative approach could be the extension
V. DISCUSSION of Grad’'s moment method to the case of the Enskog equation
which was recently applied to the uniform shear fl®@].

In this paper we have addressed the problem of plane Finally, it is worth pointing out that, since the results have
shock waves in a dense hard-sphere gas within the frameyeen derived from the Enskog description for a dense hard-
work of the Enskog theory. The results have been obtainedphere fluid, the above conclusions cannot be extrapolated
from two different routes(i) the numerical solution of the without caution to real systems. Nevertheless, here we have
hydrodynamic equations in the NS order and in tveean  restricted ourselves to the regime of moderate densitigs (
Burnett order with transport coefficients given by the Enskog<0.2), where the NS transport coefficients given by the En-
theory, and(ii) the Monte Carlo simulation of the Enskog skog theory are known to agree well with molecular dynam-
equation. We have considered a range #,<0.2 for the  ics result§31]. In addition, the shock profiles obtained from
packing fraction of the fluid in the COI(inStrearm region the Enskog equation fOf]0=02 andM =1.3 show a good
and a range £M=<5 for the Mach number. The results agreement with those given by molecular dynamics simula-
indicate that the theoretical predictions underestimate th@ons[28]. It remains an open question for the future, whose
shock thicknesss, this effect becoming more important as answer may hopefully be motivated by our results, to check
8\, decreasesi.e., at low densities and high Mach num- whether this agreement extends to higher values of the Mach
berg. In general, the linear Burnett theory presents a bettehumber.
agreement with the simulation data than the NS theory.
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